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Abstract 

Various nanostructures have been explored in DNA biosensors to convert the hybridization of 

DNA sequences to easily measurable processes, including optical, mechanical, magnetic, or 

electrochemical process. In this thesis, graphene oxide, a two-dimensional nanostructure, is 

applied in quenching the fluorescence of  core-shell nanoparticles modified with targeted DNA 

sequences. The core-shell nanoparticles, iron oxide (Fe3O4) core, and fluorescent silica (SiO2) 

shell, were produced through a wet chemical process which can directly link to a targeted DNA 

sequence (DNA-t), and the graphene oxide nanosheets were produced by the oxidation of 

graphite. In the meantime, a complementary- DNA single strand (DNA-c) is designed to interact 

with graphene oxide. Two different mechanisms have been investigated in the sensing system; 

(1) Ionic interaction between the DNA sequences and nanostructures through cationic bridging; 

and (2) covalent binding between the DNA sequences and nanostructures. In the cationic bridge 

system, the fluorescence intensity changes with the concentration of DNA-t in the range of 0 to 

30 µM with the limitation detection at 0.25 µM without graphene oxide; the other system can 

detect DNA-t in the range of 0 to 4 µM with limitation detection at 0.41 µM. In addition, the 

effect of concentration of graphene oxide on the fluorescence intensity of core-shell 

nanoparticles has been investigated. 

We hope that the the validation strategy by engineering the two dimensional nanostructured 

system can be further applied towards more efficient Cancer diagnosis.  
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Chapter 1 : Introduction, Motivation, and Objectives 

1.1 Brief Overview of Nanotechnology 

Nanotechnology is defined as the manipulation of matter on the atomic or molecular level where 

the design is used for an application. The structures are worked between 1 nanometer and 100 

nanometers in size. It refers to developing structures by top-down or bottom-up processes of 

individual components. [1,2] From the definition, it acts on the emerging technologies associated 

with the novel classes of therapeutics. Using the improved technology of nanotechnology, it may 

be possible to improve upon Targeted Drug Delivery [3], Detection [4], Medical Instrumentation 

[5] and other specific areas. Many materials will be acted upon where the nanomaterial being 

used has a large surface area to volume ratio and is size dependable for many applications as 

stated above. 

1.2 Fluorescent Magnetic Core-shell Nanostructures 

Nanostructures exhibiting both magnetic and luminescent properties are used towards many 

biological applications. Nanomaterials with bifunctional properties such as luminescence and 

magnetism, can be used in a wide range of applications such as high-contrast bio-imaging, early-

stage diagnostics, and more efficient therapeutics. The growing potential of the bifunctional 

nanomaterials have enhanced the likelihood of nano bio-interaction, protecting the core from 

aggregation, and improving the stability of the nanostructures. Silica, which is shown as the 

inorganic core is a good non-cytotoxic and biocompatible material which has been shown to 

provide some prime advantages for nanoparticles. The silica shell can decrease the polydispersity 

of the particles to prevent flocculation of particles, thus producing a greater stability in biological 

buffers. Second, it minimizes the oxidation from the magnetic core helping to maintain the 

physical and chemical properties. Third, silica can be used to surface modify with other 

functional groups to enhance the application in the field of study. Having silica surrounding the 

core structure is through the silanization process as one of the ways. [6-9] 
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1.2.1 Fluorescent Shell Structures  

Magneto-fluorescent particles have been recognized as the cutting edge materials for biological 

applications. Size and morphology has become a challenge in synthesizing magneto-fluorescent 

nanomaterials that exhibit uniform and tunable sizes, high magnetic moment, and maximized 

fluorophore coverage. To fully cover the potential of fluorescent shell structures for their optimal 

performance, the design criteria has to be fulfilled: uniform and tunable sizes, high magnetic 

content loading for magnetic properties, maximum loading of the fluorophore at the surface for 

an optimal fluorescence signal, long-term colloidal stability and a versatile surface functionality 

for the varied requirements of different applications in the biomedical sector. [10,11] 

1.2.2 Magnetite Core Structures  

Magnetite Core Structures possesses the chemical composition Fe3O4 where its unique properties 

and applications are studied upon in the area of nanotechnology. Different syntheses processes 

are involved to control the sizes for scientific and technological interest. [12,13] Fe3O4 has a 

cubic inverse structure with oxygen forming a fcc closed packing where Fe cations adhere two 

oxidation states of Fe+2 and Fe+3. [14] When the Fe cation is in a +2 state, the cation state can 

achieve an octahedral and a tetrahedral state. As opposed to the state of +3, it only has one state 

which it adheres, which is the octahedral state.  The electrons move around the two oxidation 

states in the octahedral state. From the different applications ranging from MRI Imaging to Bio-

sensing, it has its advantages and disadvantages which can be improved upon. The advantages of 

using magnetic nanostructures in various applications are that they are chemically stable under 

physiological conditions [15], low in toxicity [16], and have a good magnetic moment which 

corresponds to the good magnetic properties it consists. [17] The disadvantages of using these 

magnetic nanostructures in these applications are that the particles aggregate [18], have a poor 

water solubility [19], and a low cellular uptake efficiency. [20] Due to the intrinsic instability 

over periods of time, efforts of surface modifying the core structure is being done to minimize 

the instability through gravitational force, avoid strong interaction and aggregation of the 

nanostructures. [21]  

Many factors are instigated to make the composition of the iron oxide structures more efficient in 

many different applications. There are many different techniques to obtain these nanostructures, 
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but one of the conventional methods for the simplest and cheapest process is to imply the 

precipitation technique. The size is dependable on the various properties as a small size in shape 

implies a high surface-area-to-volume ratio which interacts with various types of chemical 

species, both aqueous and gaseous. The controlled factors associated with the shape, nucleation, 

growth, durability, reproducibility, scalability, dispersibility play a key role for building complex 

nanostructures. Magnetic enhancement can be achieved by tailoring the diameter of the coated 

iron oxide NP with the adjustment of the reduction and repeated time. Surface 

chemistry/modification can be specific to certain biomedical applications making it more cell 

internalized, biocompatible, lipophilic, etc. [22-25] 

1.2.3 Role of Magnetic Structures in DNA Sensing 

The use of magnetic structures demonstrates bifunctional properties that can be used to improve 

their biocompatibility, and stability. The functionalization of silica surrounding the core structure 

is one prime example that allows the attachment towards the target DNA as a better sensing 

technique.  

Magnetic nanoparticles owe their popularity to their numerous attributes such as their magnetic 

properties that enable them to be directed by an external magnetic field, the possibility to 

separate them from a reaction mixture, in addition to their low toxicity and biocompatibility. The 

magnetic properties of magnetite can help separate the multifunctional particles from the target 

DNA to study the quantification aspect of the target DNA. The role of magnetite also helps in the 

kinetics of hybridization of oligonucleotides. [24,25] 

1.3 Applications of Fluorescent Magnetic Core-shell 
Nanostructures 

1.3.1 Imaging  

One of the major applications (SPIONS) take place in Imaging [24-27]. In MRI imaging, these 

magnetic structures act on T 2 acquisitions where it can be used for better contrast imaging. [27-

29]. For better contrast imaging, nanoparticle surfaces can be conjugated with targeting species 

such as antibodies, aptamers, peptides, etc. This enables nanoparticle-based imaging probes to be 

substantially more specific than the conventional contrast agents. Other benefits include: 
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Reduction in material needed to achieve a set contrast, long blood-pool residence times, ability to 

undertake single cell tracking, reduced toxicity making it biocompatible. The precision control 

over size, shape and architecture has an impact in the physical attribute to determine their ability 

to provide contrast, i.e. ability to interact with the external magnetic field. [30]    

One other area this technology can be used is in fluorescence imaging. The surface modification 

on the multifunctional nanostructures play a vital role on the ability to determine their ability to 

fluoresce. By having the ability to image fluorescent nanostructures, the species can be detected 

that are not amenable to direct fluorometric imaging (such as pH, concentration, etc.) [31] 

1.3.2 Biosensor  

Starting with the definition of a biosensor, it is a small device which targets a specific analyte. It 

contains three components to be a functional device. First, there has to be a biological 

component that attaches to the analyte ,which couples to a form of transducer where the signal 

processor outputs the information. One of the most utilized methods is the fluorescence-based 

detection due to its high sensitivity, simplicity, and diversity. The advancements of 

nanotechnology using bifunctional nanomaterials have opened up to new horizons for 

fluorescence detection. The absorption as well as the luminescence peaks can be controlled to the 

particle size and size distribution based on the type of method. The advantages associated in bio-

sensing: (1) silicon is abundant and non-toxic; (2) high surface-to-volume ratio of the 

nanoparticles facilitates their binding to biomolecules; (3) the inclusion of the fluorescent dye 

inside each nanoparticle results in excellent photo-stability due to the shielding effect of silica 

from molecular oxygen, leading to high signal amplification factors during detection; (4) silica 

allows for further functionalization for a wider range to see the control in the fluorescence on the 

selectivity and sensitivity. [32-34] 

1.4 Challenges Faced with Nanostructured Biosensor 

Nanostructured materials provide an effective surface of biomolecule immobilization for the 

transducer to recognize the signal. The properties from the bi-functional materials provide an 

interesting platform for interfacing bio recognition elements with transducers for signal 

amplification. To optimize the signal, the properties related to morphology, particle size, 
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effective surface area, functionality, adsorption capability have to be taken into consideration. 

Current challenges associated with the magnetic- based nanotechnology in nanostructured 

biosensors are how to control precisely the morphology and monodispersed size of the 

nanoparticles to obtain high quality signals. The conformational changes of the biological agent 

and analyte could lead to discrepancies in understanding the signal. Larger targets that adhere to 

the analyte could be replaced due to a larger surface area and more functional groups in pursuing 

the interest from the transducer. The selectivity and specificity is another area that is in need of 

improvement where the suitable interface could be optimized. Another challenge that needs to be 

faced is the reproducibility which depends on the stability of the bio-receptor and the fabrication 

of the biosensor itself. Novel improvements can advance the technology, but the uncertainty is 

unavoidable, and always a great challenge. The calibration in some biosensors have to be done 

for every measurement and could be avoided if the samples are conducted in similar biological 

environments. To minimize the measurement uncertainty, it is crucial to use similar medium 

conditions for both standard calibrations as well as for the sample. Regeneration is another 

challenge where some sensors have a difficulty in being re-used. The complex immobilization 

can deteriorate the biosensor from being used multiple times and improvements are still sought 

out in the future. Signal enhancement is another proposed area where challenges are sought out. 

Reaction conditions such as pH and temperature can hinder the signal amplification causing a 

discrepancy. [35-37]  

1.5 Surface Modification of Nanostructures   

Surface Modification refers to modifying the surface of the material where properties associated 

with physical, chemical and/or biological characteristics differ from the original surface material. 

[38] Some of the prime characteristics that change upon modification include: roughness, cell 

internalization, lipophilicity, aggregation, surface charge, biocompatibility and reactivity. [39] 

Surface Modification can be sub categorized into two processes: Top-down Process and Bottom-

Up Process. Both of these processes are used in nanofabrication. [40]  

The top-down approach is characterized by the synthesis of the etching out of crystal plane 

(removing crystal plane) which are present on the substrate. The structure is cut out from a 
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bigger piece in a self structuring process and fabricated to the particular design. The advantages 

associated with the top down approach would be the cost, better control and scalability.  

Two processes that are characterized under the top-down approach: Physical Vapour Deposition 

(PVD) and Chemical Vapour Deposition (CVD). [41] In physical vapour deposition (PVD), the 

particles will be transformed from a solid to a gaseous state, either through the thermal 

evaporation process or through resistive etching. The ejected molecules will travel from the 

target to the substrate and form the thin film. The bombardment of ions takes place where the 

kinetic energy is about 1-10 eV. [42-49] In Chemical Vapor Deposition (CVD), the material will 

be in a gaseous state which later condenses on the substrate through chemical precursors. There 

are advantages associated with the CVD process where it can enhance the hydrophilicity by 

increasing the functionality of the molecule. This process depends on the surface chemistry as 

the precursors involved can be toxic. 

The limitations associated with the top-down approach is from the UV light where the small 

wavelengths become deleterious to the material. [50-60] 

 A bottom up method is the process of stacking atoms onto the substrate. [58] The small buildup 

of atoms happens to be crafted through covalent or supramolecular interactions. [58-59] The self 

assembly process undergoes an ordered process through various supramolecular interactions (i.e. 

hydrogen bonding, van der waals, electrostatic, pi-pi interactions, hydrophilic-hydrophilic, and 

hydrophobic-hydrophobic interactions). The bottom-up approach technique is one of the 

processes involved in biological applications. [59-62]   

1.6 Graphene and Graphene Oxide Derivatives  

Graphene is an allotrope of carbon which forms a 2D, atomic scale hexagonal lattice and it is 

able to effectively conduct heat and electricity. The shape is made up of a hexagonal lattice of 

carbon atoms in a honeycomb structure.  It is made out of carbon atoms where each atom 

consists of four bonds, three sigma bonds and one pi bond out of the plane. The stability of the 

material is dependent on how tightly packed carbon atoms are from the sp2 hybridization. [63] 

Fascinating properties of graphene arise from its high surface area combined with electronic and 

thermal conductivity and its mechanical strength. Due to the material’s high surface area-to-
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volume ratio and high conductivity, it leads to significant improvements in many applications. 

[63]  

Due to its unique microstructures, graphene demonstrates special and always enhanced 

physiochemical properties. For instance, the Young’s modulus and the intrinsic strength of 

graphene are around 1 TPa and 130 GPa respectively. The electron mobility and thermal 

conductivity of graphene are 2.5 × 105 cm2 V-1 s-1 and 3000 W mK-1 respectively. [64] Graphene 

has been used to fabricate flexible electronics [65], high-frequency and logic transistors. [66] 

Recent studies show that graphene can be applied in electrochemical and optical biosensors to 

detect small levels of cancer biomarkers. [67] 

Hummer’s approach is the most common one for the synthesis of graphene sheets from graphene 

oxide. [68-71] The reduced form of graphene oxide is graphene through an oxidizing agent, like 

hydrazine or ascorbic acid. Overall, using Hummer’s approach is one of the best methods in 

producing both of these compounds.   

The oxygen functional groups on the surface of graphene oxide (GO) provide good sites for a 

myriad of interactions for linking molecules such as polymers, nanoparticles (NPs), etc. In GO, 

the associated functional groups are epoxy bridges, hydroxyl and carboxyl groups. Due to the 

disruption of sp2 bonding, it acts as an electrical insulator.  The advantages of using GO for 

enzyme immobilization induces many explorations of its properties and applications where 

techniques, such as Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) 

could be used to view the immobilized structure. [72-77] 

1.7 Motivation  

DNA sequencing is the process of determining the precise order of the nucleotides. It determines 

the order of the bases in a strand of DNA. The knowledge of DNA sequences has become 

indispensable in basic biological research, and applied in applications in medical diagnosis, 

biotechnology, forensic biology, and biological systematics. DNA sequencing is the standard 

method utilized for initial identification of mutations. People study the DNA sequences for 

human beings who have genetic disorders of the immune system. Specific DNA sequences can 
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serve as a reliable biomarker for the detection of Cancer as well and many methods are in place. 

[78-79]   

The main methods researchers are working on in DNA detection are using the polymerase chain 

reaction (PCR), radioisotopes, intercalating dyes exposed with UV light, and silver staining 

process.  

The first method involving PCR is a powerful tool to analyze samples of DNA sequences apart 

from amplifying minute amounts of nucleic acids. The drawback associated with PCR is that it is 

not only a very sensitive technique, but also specific. The primers have to be directly 

complementary to the target DNA for DNA sequencing detection and amplification. As the 

technique is too specific, it can cause false negative results. [80,81] Using radioisotopes by 

incorporating P32 into one of the dNTP can be dangerous, expensive and a long time for the 

detection to occur. [82,83] The third method of intercalating dyes exposed to UV light will label 

DNA but not differentiate between different amplicons. [84] The fourth method involves the 

silver staining process can result in poor images from the high background noise and the expense 

of the reagents. [85] 

From these shortcomes from these primary methods, the use of the fluorescent detection is a 

good approach for its low cost, high sensitivity, and low background noise. In particular, DNA 

offers a number of potential advantages for use in this setting. One is water solubility where it is 

highly soluble in biological settings, while achieving the water solubility is a challenge for small 

molecules. Second is the ease of synthesis where it could be bounded to fluorescent tags and 

quenchers. With all the advantages associated, the fluorescence detection is one of the ways that 

leads to the objective of my thesis.  

 Materials like gold and quantum dots have been utilized for the application of DNA biosensors. 

This project revolves around the use of nanomaterials in two different mechanisms and see the 

sensitivity of the target DNA.These magnetic nanoparticles are technologically challenging to 

control the size, shape, stability, and dispersibility in desired solvents. The magnetic iron oxide 

NPs have a large surface-to-volume ratio where the major drawbacks of using only the core 

structure will lead to aggregation, oxidation, loss of magnetism and dispersibility. The main 

objective of this thesis outlines having two different systems: Cationic Bridge System and 
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Covalent Interaction System. The cationic bridge system involves using a cationic molecule to 

bridge the interaction between the DNA with silica particles as well DNA-c on GO. The DNA 

gets hybridized in solution to study how selective and sensitive it is towards DNA using an 

optical sensor and study the effect of GO. Second, the covalent interaction involves modifying 5’ 

DNA-t and interacting it with the silica particles. DNA-c will also be modified where it interacts 

with the COOH on GO. The DNA will be hybridized in solution and the DNA-t on silica 

particles at different concentrations will be studied upon.  

The objectives of this thesis:  

• The synthesis of Iron Oxide nanostructures (Formation of the Core): (1) First process 

delves into the chemical synthesis; (2) Second process delves into the coating process of 

the inorganic core on iron oxide; (3) Third process involves for further functionalization   

onto the inorganic core.  

• The synthesis of the Graphene Derivatives and further functionalization onto the material 

• To compare the characterization of Iron oxide and the core-shell using Vibration Sample 

Magnetometer(VSM), Transmission Electron Microscopy(TEM) 

• To compare the DNA adsorption on the two different systems by looking at various 

characterizations as well on the effect of graphene oxide  

1.8 Thesis Overview  

Chapter 2 Literature review 

This chapter outlines the applications revolving around iron oxide and the functionalized uses of 

this material in the biomedical industry. The advantages of iron oxide when functionalized 

produces better properties associated with better sensitivity and selectivity due to the magnetic 

properties associated with the core material. The advantages associated with the material are 

introduced to show how early it can detect the biomarker activity and act as a better biosensor. 

The idea of what a typical biosensor is introduced to apply how early cancer tumor cells can be 

detected. Also, the problems associated with just iron oxide is encountered to see the difference. 

Different functionalized materials are discussed in the chapter and various surface modification 

techniques are included using two different transducers.   
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Chapter 3 Experimental procedure 

This chapter outlines the experimental procedure for the different synthetic procedures of the 

core and the shell. Also, in addition, the process to synthesize the derivatives of graphene is also 

shown. In addition to this, various characterization techniques are observed in this research to 

later observe the DNA adsorption onto the functionalized material for application use. The two 

different mechanisms of the Cationic Bridge System and Covalent Interaction System adhere to 

different synthetic processes which are explained. Different synthetic procedures are put in place 

to explain the two different mechanisms which later view the difference in the two different 

systems of how selective and sensitive DNA could adhere to the sensing system that the signal 

processor outputs.  

Chapter 4 Cationic Bridge System with Core-Shell and Graphene Oxide System as a 

Biosensor for DNA Sensing 

The core and its shell have been synthesized by thermal decomposition and silanization 

processes, respectively. In this chapter, various characterization techniques like TEM and UV-

Vis spectroscopy were used to confirm the nanomaterial coating. Other techniques like FTIR was 

used to differentiate the peaks of the various graphene derivatives and the results of the DNA 

adsorption as well. This chapter will derive its use on using a cationic bridge interaction system 

to view the selectivity and sensitivity of DNA-t on the silica particles without graphene oxide. In 

addition, the effect of concentration of graphene oxide on the fluorescence intensity of core-shell 

nanoparticles has been investigated. 

Chapter 5 Covalent Interaction with Core-Shell and Graphene Oxide System as a 

Biosensor for DNA Sensing  

The core and its shell have been synthesized in the same procedure. The shell has been coated 

with amino groups that surround the silica structure and later attached to glutaraldehyde that 

attaches to the 5’ Modification of DNA-t that contains an amino group. The DNA-t hybridizes 

with DNA-c that is covalently bonded to GO. This chapter focuses on a different type of 

interaction to see how selective and sensitive the system adheres to the DNA before graphene 
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oxide. In addition, the effect of concentration of graphene oxide on the fluorescence intensity of 

core-shell nanoparticles has been investigated. 

Chapter 6 Summary and future work 

This chapter gives a detailed summary and conclusions of this research. Future work on the 

development of the DNA- biosensor model is discussed with other plausible design 

modifications.  
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Chapter 2 : Literature Review 

The use of nanotechnology is widely used in many applications, particularly in Cancer 

Detection. This review of different DNA biosensors is presented with the applications explained. 

With the idea of how these biosensors work, different techniques are presented for DNA 

detection leading to Cancer applications. From some of the techniques from each biosensor, 

different nanostructures are used. The concept of implementing nanostructures have been great 

starting materials used in biosensors. The use of different nanomaterials is discussed to enhance 

the selectivity and sensitivity in biosensors.  

1.1                               2.1 Nanotechnology in Cancer Applications 

According to World Health Organization (WHO), over 8.8 million people worldwide died from 

cancer in 2015, and it represents one of the major leading causes of death in the United States 

[1]. Cancer is caused by the uncontrolled growth and spread of abnormal cells. Cancer cells can 

evade apoptosis as these malignant tumor cells keep dividing and undergo different stages. [2] 

Firstly, there is proto-oncogenesis that initiate the cell division and mutation of these genes to 

generate cancer related genes. Secondly, mutated tumor-suppressor genes lead to cancer 

formation. Thirdly, mutations of genes regulated by apoptosis tend to be carcinogenic. Lastly, 

mutations of the DNA repairing genes also increase the chances of leading to cancer. These 

mutations that occur may arise from: deletion, duplication, or insertion of the nucleotides. [3] 

General cancer treatment techniques are normally associated with delineating the cancer cells at 

the early stages like chemotherapy, surgery and radiation. However, traditional diagnostic 

tools, including magnetic resonance imaging (MRI), computed tomography (CT), and X-ray 

scan, are expensive and normally require a long waiting time to access. Furthermore, traditional 

diagnostic tools require several million cells for accurate clinical diagnosis. [4] The challenges 

of early diagnosis and effective treatment of cancer requires a sensitive sensor to detect a small 

amount of samples with high sensitivity and selectivity. For instance, an ideal molecular imaging 

is expected to correctly diagnose early-stage tumor of approximately 100–1000 cells. [3,5,6] 

Table 2.1 shows the target molecules with the recognizing elements to target different Cancer 

Applications.  
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    Table 0.1: Target Molecules with Recognizing Elements in Cancer Applications 

Targeted 

Molecules 

Surface 

Modification and 

Recognizing 

Elements 

Disease Reference 

DNA-t DNA-C and DNA-

r.AuNP 

Breast Cancer Rasheed P., et al. 

Sensors and 

Actuators B. 2014; 

204: 777-782. [7] 

Nucleolin Aptamers, eg. 

AS1411 

Any type of Cancer Feng L., et al. 

Biomaterials. 

2011; 32: 2930-2937. 

[8] 

Anti-CRP Antibody CRP Antibody Lung Cancer, 

Colorectal Cancer, 

Myleoma Cancer, 

Prostate Cancer 

Zhu C. et al, 2D Mater. 

2015; 

2: 032004-10. [9] 

PCG PPi Melanoma Cancer Muthuraj B., et al. 

Biosens. 

Bioelectron.  2017;  

89:636- 

644. [10] 

Folate Receptor Folate Modified 

Hydrophilic 

Epithelial-Derived 

Tumors 

Li T., et al., J. Mater. 

Chem. 

http://dx.doi.org.proxy1.lib.uwo.ca/10.1039/2050-7518/2013
http://dx.doi.org.proxy1.lib.uwo.ca/10.1039/2050-7518/2013
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2.2 DNA Sensors   

Biosensors are small devices where a biological reaction detects a specific target analyte. [13] 

These devices engage the coupling reaction of the biological recognition element with the target 

analyte using a physical transducer that translates the bio-recognition event into a useful 

electrical signal. Different types of transducer elements are electrochemical, optical or mass-

sensitive devices that generate current, light or frequency signals, respectively. From these types 

of signals, the signal processor can output the information to readable data from the respective 

signals. These devices have a selective binding towards the target analyte through a confined 

ligand partner (e.g. antibody, oligonucleotide). The immobilized enzyme used for recognizing 

the target substrate is used for many biological applications such as towards the goal of rapid, 

simple and inexpensive testing of infectious diseases, detection of DNA damage and interactions, 

etc.  

2.2.1 Electrochemical Biosensors   

The electrochemical design consists of a three-electrode system: The Working Electrode (W.E.), 

the Counter Electrode (C.E.), and the Reference Electrode (R.E). [14] The electrolyte plays a 

vital role in having a chemical substance conjugating onto the specific material. Cyclic 

Voltammetry (CV) is where the voltage gets tested between the reference electrode and the 

working electrode Another electrochemical technique involved is Electrochemical Impedance 

Spectroscopy (EIS) where the applications range from studying the corrosion of metals, 

adsorption and desorption to electrode surface, electrochemical synthesis of materials, catalytic 

reaction kinetics, and ions mobility in energy storage devices such as batteries and 

supercapacitors. [15] EIS technology can distinguish the electrochemical behaviour between the 

Polymers 
B. 2016; 4: 2972-2983. 

[11] 

Anti- CRP Antibody HRP, Antii-CRP 

Antibody 

Lymphoma Cancer Zhu Y., et al.. Adv. 

Mater. 

2012; 22: 3906- 3924. 

[12] 

http://dx.doi.org.proxy1.lib.uwo.ca/10.1039/2050-7518/2013
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coating and the metal substrate through the use of built in electrical circuits such as resistors and 

capacitors. [15-17] 

Electrochemical devices have proven to be useful for sequence-specific bio-sensing of DNA. 

The electrochemical DNA sensing strategy is based on the reduction and oxidation of DNA. The 

amount of DNA reduced or oxidized would reflect the amount of DNA captured. 

Electrochemical measurements such as Cyclic Voltammetry and the Electrochemical Impedance 

Spectroscopy are used to develop methodologies for detecting DNA. [18]  

2.2.2 Optical Biosensors   

Optical biosensors use the interaction between light and matter to report the presence of analyte. 

A form of spectroscopy is used to isolate the signal due to the analyte, including Fourier 

Transform Infrared (FTIR) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. One of 

the main techniques is fluorescence. At room temperature most molecules occupy the lowest 

vibrational level of the ground electronic state, and on absorption of light they are elevated to 

produce excited states. Excitation can result in the molecule reaching any of the vibrational sub-

levels associated with each electronic state. From achieving the excited states, the molecule 

rapidly loses energy by collision and falls to the lowest vibrational level of the excited state. 

From the level of excitation, the molecule can return to any of the vibrational levels of the 

ground state, emitting in the form of fluorescence. The electronic structures that allow for 

excitation and emission of light are referred to as fluorophores. Species exposed to minimal 

fluorescence when exposed to a particular wavelength of light is labeled as a fluorophore to 

enable detection based on the intensity and spectrum of emitted light.  The fluorescence signal is 

isolated using optical filters to eliminate background and excitation light. [19,20] 

One of the most common fluorescence bio-sensing is the sandwich assay. This experiment shows 

the analyte is selectively bound to the surface of the targeting molecule which has been 

immobilized through some sort of interaction. By having a fluorescent tag, its surface 

concentration can be measured via highly sensitive fluorescence spectroscopy. With the use of a 

fluorescent label, the use of the emission signal offers a great promise for direct detection of 

DNA. [21] 
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For optical sensors, different types of mechanisms involving energy transfers are involved such 

as Forster Resonance Energy Transfer, Fluorescence Energy Transfer, Resonance Energy 

Transfer, or Electronic Energy Transfer. Theodor Forster developed this technique where the 

mechanism influences energy transfers between two light-sensitive molecules. For example, 

when a donor chromophore is in its high excitation state, energy is transferred to the acceptor 

chromophore through dipole-dipole interactions. The criteria for the stated energy mechanisms 

involve the distance between the donor and acceptor chromophore, and the orientation of the 

chromophores. The methods used in these energy transfers help in identifying how surface 

modification will take place. The FRET mechanism is between two fluorophores used as donor 

(D) and acceptor (A). The energy transfer efficiency (E, i.e. the fraction of energy transferred) is 

reverse proportional to the distance of two fluorophores as shown in Equation 1. [22-25] 

           𝐸 =
1

[1+(
𝑟

𝑅𝑜
)6]

     (1) 

where r is the distance between two fluorophores, R0 the distance at which 50% E was achieved. 

R0 is a characteristic parameter for given partners at given medium.  

2.2.3 Mass- Sensitive Devices   

The use of quartz crystal microbalance (QCM) devices  allow the dynamic monitoring of 

hybridization events. The DNA is immobilized onto the quartz crystal where the increased mass 

associated with the hybridization results in a decrease of oscillating frequency.. QCM 

transducers can also be used for the investigation of other DNA interactions, including protein-

DNA binding.  

2.2.4 Magnetic Biosensors 

A different type of biosensor uses change in the magnetic properties to detect a species of 

interest. Functionalized superparamagnetic nanoparticles can bind specifically to an analyte upon 

exposure to a sample or injection into an organism. The particles can be designed in a way to 

interact with the analyte through polyvalent bonding which can amplify the contrast in magnetic 

properties. [26-29] 
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A common type of magnetic biosensor uses materials whose resistivity changes with applied 

magnetic field. Changes in the current across these devices can be measured as analyte 

molecules labeled with ferromagnetic nanoparticles specifically adsorb to the sensor surface and 

introduce magnetic fields. With the help of magnetic nanoparticles bonded to target DNA, the 

magnetoresistance changes can be applied for DNA detection. [27] 

Several drawbacks have been present in this technology and have to be improved upon. Few 

biological molecules can be exploited in magnetic resonance or magneto-resistive biosensors. 

Another disadvantage associated is that nonspecific interactions can occur between magnetic 

nanoparticles and other materials. Also, aggregation in solution onto the sensor surface can lead 

to false measurements. [28] 

2.3 Different Techniques Used in Different Biosensors 

With different biosensors widely used for DNA detection, different techniques associated have 

been implemented. Different nanomaterials have been used for different systems to test out the 

selectivity and sensitivity. The same techniques and procedures can be sought out with different 

materials used using these methods. In table 2.1, surface modification techniques of 

nanomaterials have been used to  

2.3.1 Graphene-DNA Electrochemical Sensor for Target DNA  
         Detection 

Breast Cancer 1 (BRCA 1) gene is a tumor suppressor gene that is expressed in breast cells and 

other tissues. Mutations associated with this gene lead to high risk of breast cancer. This 

technology can detect the concentration level of BRCA 1 levels within the human body. [30] 

Breast Cancer 2 (BRCA 2) gene is another tumor suppressor gene that is expressed. Mutations 

associated with BRCA 1 and BRCA 2 resulted in 54% and 23% for ovarian cancer, respectively. 

[31-36] 

The CV took measurements from ranging targeted DNA (DNA-t) concentrations on 

GCE/graphene/DNA-r|DNA-t|DNA-AuNP electrode and the oxidation peaks could be analyzed 

with increasing concentrations of DNA-t. In Fig. 2.1, it shows the design on the electrode. With 

the gold particles hybridizing better, the oxidation of the gold nanoparticles increases and higher 
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peaks on the CV could be detected. [37] The CV could target 1 fM BRCA1 gene which is the 

biomarker of breast cancer. The gold nanoparticles have a big impact on the hybridization factor 

with DNA enhancing the levels of oxidation. [7] 

 

Another design on the three-electrode cell is established where the working/sensing electrodes 

consist of modified MDEAs, Ag/AgCl as the reference electrode, and BSA/anti- CRP 

antibodies/MPA/rGO-NP/ITO on the counter electrode. Eight circular electrodes are 

immersed onto the Indium Titanium Oxide electrode. [8] 

Using the chronoamperometry analysis, the redox current had a linear proportion with increasing 

DNA-t concentration. When 10 fM of DNA-t was deposited, it showed a high current value as 

opposed to the 3 base mismatch complementary probe DNA-t. This system proved that the 

sensor is selective towards DNA and can be utilized for detecting mismatches in BRCA 1 gene 

mutations. [7, 37-40] 

The detection capability of the GCE/Gr/DNA-c|DNA-t|DNA-r.AuNP with different DNA-t 

concentrations were monitored at 1.1 V. With an increase in concentration of DNA-t, the change 

was detectable up to 100 aM DNA-t. [7]  

 

Figure 2.1 : Electrochemical Design for DNA-t Detection [7] 

Electrochemical Impedance Spectroscopy (EIS) technique helps in detecting the electrode 

surface composition by monitoring the electron transfer resistance (Ret). From different 
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compositions involved where Nafion was used to immobilize the nanocomposite layer, a lower 

Ret value was achieved compared to the involvement of using an aptamer. With a higher 

impedance value, cancer cell detection based on aptamer-graphene-modified electrode is suited 

the best. The technique implemented provides the high binding affinity of AS 1411 to the 

nucleolin surface of cancer cells. The EIS assists in indicating the affinity level of the aptamer to 

the cancer cells compared to normal cells. [8, 41-43] 

HeLa cells, K 562 cells, MDA 231 cells, and NIH 3T3 cells were tested in this work. The cells 

were measured using EIS and found that the breast cancer cell line, MDA-231, had the highest 

Ret value. From this, the conclusion is that the MDA-231 cells monitored the cancer cells much 

better than other type of cells using the cell culture technique. [8] 

 

The detection capability of the GCE/Gr/DNA-c|DNA-t|DNA-r.AuNP with different DNA-t 

concentrations were monitored at 1.1V. With an increase in concentration of DNA-t, the change 

was detectable up to 100aM DNA-t. [7]  

2.3.2 FRET and CRET in Optical Sensors 

Here, we are focusing on two major optical biosensors, i.e. Fluorescence Resonance Energy 

Transfer (FRET), and Chemi-luminescence Energy Resonance Transfer (CRET).  

The distance-dependent energy resonance transfer between donor and acceptor makes them offer 

great benefits in accurately detecting biomolecules/cells in vivo and in vitro.  

Fluorescent amino acid (histidine) functionalized perylenediimide (PDI-HIS) is a technique 

where the “turn-off and turn-on” can detect Cu2+ ions. The disaggregation of PDI-HIS-Cu2+ of 

the fluorescence quenching helps detect the PPi levels. [10]  

 

A unique optical approach on detecting the concentration of pyrophosphate (PPi) has a direct 

correlation with the cancer diagnosis. The fabrication technique of using the fluorescent probe 

of PDI-HIS, copper ion and graphene oxide (GO) enhances the selectivity and sensitivity for 

detecting PPi, a cancer biomarker. [10] The results show that the self-assembled 
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nanocomposites made of PCG (PDI-His+GO+Cu+2) have a low detection limit (LOD), 1 fM, for 

PPi in comparison to PDI-HIS-Cu+2. 

In addition, FRET technique by utilizing quantum dots for the chemotherapy of ovarian cancer 

has been reported. The FRET technique transfers energy to the drug molecule from the Quantum 

Dot (QD) as they are attached on graphene. The fluorescence emission was recorded and the 

quenching indicates the release of Doxorubicin (DOX) from QD. Some reports show that 

graphene or graphene oxide-based FRET sensor incorporating the design with antibody-DNA-

AuNP can be used for detecting DNA. [44]  

 

CRET techniques using luminescence organic chemicals to excite an acceptor in CRET pair. The 

interaction between anti- C-Reactive Protein (CRP) and the C-Reactive Protein (CRP) can be 

detected in the graphene-based CRET. Such immune-sensor can accurately detect the C-reactive 

protein level.  

 

CRP (C- Reactive Protein) have been investigated to primarily look at the diseases closely 

related to the heart. The amount of CRP with respect to the normal levels is usually less than 3 

mg/L. The concentration of CRP significantly increases when there is an infection associated 

with cardiovascular disease, in this case, the primary issue is focused towards Lymphoma 

Cancer. Higher CRP concentrations have been reported towards lung, pancreatic, breast, ovary, 

esophagus, liver, biliary tract, stomach and multiple myeloma. [44,45] 

The surface modified DNA-PBMC and the CRP-capturing ability is examined. The new 

innovation drives as a stepping stone fluorescence imaging towards the detection of CRP has 

been examined. The new surface modified engineering application is a new innovative idea 

towards cancer treatment. The DNA-PBMC complex had a recognition towards different 

concentrations towards CRP and had an impact towards the fluorescence intensity levels. As 

the concentrations of the CRP increased, the fluorescence intensity increased. [46] 

2.3.3 DNA Hybridization with Mass-Sensitive Devices 

Here, one of the techniques is the development of a QCM-based DNA biosensor for the detection 

of the hybridization of CaMV 35S promoter sequence in genetically modified organisms. Using 
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the quartz crystal, two methods were proposed: (1) Thiol-derivatized Probe Immobilization and 

(2) Amino- derivatized Probe Immobilization. [47-49] 

In the thiol-derivatized probe immobilization, the thiol-derivatized probe was interacting with the 

gold surface of the quartz crystal which was one of the methods to see how the hybridization of 

the thiolated probe responded with the CaMV 35S sequence based in the change of frequency. 

In the amino-derivatized probe immobilization, the quartz crystals were functionalized with 

glutaraldehyde and the changes of frequency was recorded upon the hybridization between two 

DNA sequences. The DNA sequence of the amino probe in relation to the CaMV 35S sequence 

was recorded based on the change of frequency.  

2.3.4 Magnetic Tunnel Junction Sensors on DNA Detection     
         With Magnetic Nanoparticles 

In this section, the study of how target DNA was detected based on the use of the magnetic 

tunnel junction between the iron oxide nanoparticles and DNA. A magnetic tunnel junction 

(MTJ) sensor bridge was designed to detect the presence of magnetic NPs bonded to target DNA. 

[50,51] 

Using the magnetic field strength of the magnetic particles, the magnetic tunneling bridge was 

designed to detect the presence of magnetic NPs bonded to the sensor area, in this case, the target 

DNA. [50] 

With the traditional methods, this is one of the innovative approaches of using magnetic field 

strength to detect the selectivity and sensitivity of the target DNA and is still under improvement. 

[51]  

2.4 The Different Nanostructures Used in Biosensors 

Nanomaterials have demonstrated a big impact as the starting materials in the bio-sensing 

application. Nanomaterials are being used for the bio-recognition element to improve on the 

selectivity and sensitivity of the bio-catalytic event. [52,53] In the field of biosensors, different 

materials sought out offer high sensitivity and specificity detected by various mechanisms.      
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2.4.1 Iron Oxide Nanostructures  

Nanoparticles with average particles size in the range from 1-100 nm have been considered as an 

alternative tool for cancer diagnosis and therapy at an early stage as they have special 

physiochemical and unique size-dependent properties. [54,55] The magnetic nanostructures are a 

vital material used in various applications in sensors, cancer treatment, drug delivery, solar cells, 

high performance batteries, data storage materials, etc. The advantages of using magnetic 

nanoparticles are: chemically stable under physiological conditions, functionalized with other 

materials, and have a high magnetization moment. The disadvantages associated with magnetic 

nanostructures are: aggregation and instability of nanoparticles. [56-59] Since the nanostructures 

can oxidize, a non-reactive coating layer is coated on the surface of the magnetic core. By 

fabricating the core-shell structure, the magnetic core could be isolated from a corrosive 

environment. The shell can include two major types to protect the core: organic materials 

(polymer) and inorganic materials (silica). Complex materials can be embedded such as: carbon 

nanotubes, graphene derivatives, and polymers, etc. [60,61] The synthesis process of the 

magnetic nanostructures is divided into four different types: co-precipitation [60], thermal 

decomposition [61], and hydrothermal process. [62] Different processes give out different size 

and shape of the magnetic nanostructures.  

In the co-precipitation process, the anion and cation solution mix and the nucleation process 

takes place. Next, the particles agglomerate and the precipitation occurs. Then, the filtration 

process takes over and finally the calcination occurs to obtain the pure product. The process 

illustrated below is the chemical reaction to obtain the magnetite version using this technique. 

Also, it is noted to scale up the yield of the product by using this technique.  

Fe2+ + 2OH− → Fe(OH)2 

3Fe(OH)2 + 0.5O2 → Fe(OH)2 + 2FeOOH + H2O 

Fe(OH)2 + 2FeOOH → Fe3O4 + 2H2O 

Fe3+ + 3OH− → Fe(OH)3 

Fe(OH)3 → FeOOH + H2O  
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12FeOOH + N2H4 → 4Fe3O4 + 6H2O + N2 

In the thermal decomposition technique, an endothermic reaction occurs to break the chemical 

bonds to produce the magnetite. In this process, sodium oleate breaks down to iron oleate at high 

temperature, roughly around 320 degrees Celsius and later produces magnetite. The temperatures 

are well above the flash point of the organic vapors generated by the reaction mixture, under 

anaerobic conditions. Therefore, safety considerations are typically carried out when molecular 

oxygen has to be used. [61]  

FeCl2+Na-Oleate→ Fe-Oleate + NaCl 

In the hydrothermal synthesis, it is defined as a method of synthesis of single crystals that 

depends on the solubility of minerals in hot water under high pressure. A solvent is used with 

respect to the iron chloride where the high temperature and pressure are being involved to 

produce the iron oxide nanostructures.  

The major drawback of magnetite is that it can easily oxidize in exposure to oxygen. To 

minimize the interaction of the oxidation, Fig. 2.2 shows the transition from magnetite to 

maghemite. [62]  

 

Figure 2.2: Oxidation and Reduction of Iron Oxide Compounds [62] 

Fe3O4 Fe1-xO a-Fe

Reduction

Fe1-xOFe3O4Fe2O3

Oxidation
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2.4.2 The Idea Behind Deoxyribonucleic Acid (DNA)  

DNA structure, was first worked out by two scientists, Watson and Crick. They determined the 

structure of DNA was a double-helix polymer, or a spiral of DNA strands, each containing a long 

chain of monomer nucleotides, wound around each other. [63]  

DNA, which is called deoxyribonucleic acid, is the molecule that contains the genetic code of 

any organism. In other words, it is a nucleic acid that contains the genetic instructions used in the 

development and functioning of all known living organisms. The organisms include any of the 

following: animals, plants, protists, archaea, and bacteria. In prokaryotes, DNA is circular in 

shape; while in eukaryotes, it is linear with histone proteins. [64,65]  

The structure of DNA is a long polymer of simple units called nucleotides, where the backbone 

is made up of sugars and phosphate groups joined by ester bonds. The sugar is attached to a 

certain base where it could be adenine, cytosine, guanine, or thymine.  The sequence of these 

four bases along the backbone encodes long term information. Fig. 2.3 shows the full structure of 

DNA.  
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Figure 2.3: Structure of DNA 

  

Figure 2.4: The Structure of Bases in a and b 
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Since DNA is double stranded in nature, the composition of the bases was determined using 

Chargaff’s rule. The amount of A always equals the amount of T; while the amount of C always 

equals the amount of G. The bases would bind together forming the double helix structure with 

the use of hydrogen bonds. A and T would bind using 2 hydrogen bonds while C and G would 

bind using 3 hydrogen bonds. In Fig. 2.4, it shows the complete structure of the different types of 

bases. In a double-stranded DNA molecule, the 5’ end (phosphate-bearing end) of one strand 

aligns with the 3’ end (hydroxyl-bearing end) of its partner, and vice versa. DNA is composed 

of: 

• A phosphate backbone where each phosphate radical has negative charge 

• Deoxyribose sugar 

• 4 types of bases or nucleotides. These are adenine (A), thymine (T), Cytosine (C), 

Guanine (G) 

DNA contains instructions to construct other components, such as proteins and RNA molecules. 

DNA undergoes a transcription process to produce RNA. The transcription process is where the 

double stranded DNA is copied to a single stranded mRNA and RNA polymerase synthesizes it. 

The RNA produced undergo a translation process to make proteins. In the translation process, 

ribosomes translate the sequence of bases in the mRNA to proteins which perform functions 

inside and outside the cell. [65-69] 

2.4.3 Graphene Oxide and Graphene  

Graphene Oxide has been synthesized from graphite oxide where the functional groups 

associated with the material are a good candidate for chemical functionalization. Aside from the 

oxidative mechanisms being explained, the chemical structure of GO is a considerable debate 

over the years. The structure of GO is a continuous aromatic lattice of graphene interrupted by 

epoxides, alcohols, ketone carbonyls, and carboxylic acid groups. GO contains sp3 carbon atoms 

bound to oxygen, which makes it an insulator. [71-72] 

The functionalization of GO can be used on a large scale for preparing large graphitic films, as a 

binder for carbon products, and as a component of the cathodes of lithium batteries. The 

hydrophilicity of GO allows them to participate in lithographical processes like deposited on 
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substrates to produce thin films which is necessary in electronics. GO can be functionalized for 

optoelectronics, biodevices or as a drug-delivery material. [71-73] 

With the hydrophilicity property of GO, it can be easily dispersed in water and other organic 

solvents due to the presence of the oxygen functionalities. This remains as a high property when 

mixing the material with ceramic or polymer matrixes when trying to improve their electrical and 

mechanical properties. [72-73]  

 

  

Figure 2.5 : Graphene Oxide Structure 

Quite recently, graphene and graphene oxide, the ultra-thin two-dimensional nanomaterials, have 

attracted extensive attention because of their unique structure and remarkable mechanical, 

electrical, thermal and optical properties. Fig. 2.5 shows the structure of Graphene Oxide with 

the respective functional groups. More studies have shown that nanoparticles incorporating with 

graphene or graphene oxide could show great potential for sensing cancer biomarkers or cells at 

very low concentration, and realizing targeted treatment. [74-75]  

In this review, the recent key findings of the newly developed hybrid graphene-based biosensor 

for detecting cancer cells are summarized. The surface modification of hybrid graphene/graphene 

oxide used in electrochemical biosensors and optical biosensors for detecting cancer biomarkers 

or cancer cells are addressed. [76-80] 
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2.5 Future Perspectives and Summary 

2.5.1 Future Perspectives  

Another proposed strategy for future purposes is using Streptavidin and Biotin for the covalent 

bonding to see how selective the design is towards DNA sensing. The design can show how 

selective and sensitive it is towards DNA sensing and quantify in a more convenient way how 

much DNA gets conjugated.  

The composition of Streptavidin is composed of 4 essential identical polypeptide chains, also 

known as a homotetramer. The molecular weight of the protein is 55,000 daltons. It contains no 

cysteine residues, carbohydrate side chains or associated cofactors. Different preparations of 

streptavidin show considerable heterogeneity at both the amino- and carboxy-termini of each 

subunit polypeptide due to proteolysis during biosynthesis and secretion. Streptavidin lacks the 

glycoprotein portion of the molecule and therefore shows less non-specific binding than avidin. 

It has a molecular weight of 53.6 kDa and reactive towards Biotin.  

The composition of Biotin contains an ureido ring fused with a tetrahydrothiophene ring. A 

valeric acid substituent is attached to one of the carbon atoms of the tetrahydrothiophene ring 

and is a water-soluble B-vitamin, also called a vitamin B7. The valeric acid side chain 

incorporates various reactive groups that facilitate the addition of a biotin tag to to other 

molecules. The chemical composition is C10H16N2O3S. In Fig. 2.6, it shows the structure of 

Biotin. [81,82] 

 

Figure 2.6: The Structure of Biotin [82] 



 

37 

        

The streptavidin-biotin complex is the strongest known non-covalent interaction between a 

protein and a ligand. The bond formation between biotin and streptavidin is very rapid, and once 

formed, is unaffected by pH, temperature, organic solvents, and other denaturing agents. 

Streptavidin has four sites for Biotin to bind to via non-covalent interaction.   

This type of technology is used in applications when constructing a biosensor for DNA detection. 

Different techniques are being proposed, and this strategy will help to test the selectivity and 

sensitivity of DNA at an earlier stage. With the covalent binding strategy in place, one can study 

how this is used in the sensing technology when placed in an electrical, optical, mass-sensitive, 

or magnetic transducer. [81-83]   

2.5.2 Summary  

In summary, this section deals with the types of biosensors used in many applications, 

particularly in DNA sensing. The four main types of biosensors listed are: Electrochemical, 

Optical, Mass-Sensitive and Magnetic. With different biosensors used, different techniques were 

involved with the four listed sensors. The use of certain nanostructures with each technique was 

used for a certain transducer to analyze the biological application. With the types of biosensors, 

some of the techniques involved and the use of the nanostructures, it sets up the process of 

identifying the biological application.  
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Chapter 3 : Experimental Methods 

In this chapter, the experiments performed in this project are described in detail: (1) Synthesis of 

the core structure, (2) Synthesis of the core-shell structure, (3) Synthesis of graphene oxide 

derivatives, (4) DNA-t Loading on MFNP, (5) DNA-c Loading on GO, (6) DNA-c and DNA-t 

Hybridization, (7) Amino Based Functionalization on Iron Oxide-Silica, (8) Characterization 

Methods 

1.1                               3.1 Synthesis of Magnetite 

The synthesis of Fe3O4 Nanocrystals was based on reference (1). The process is broken down 

into two parts: (1) Synthesize the Iron-Oleate Complex, (2) Synthesize the Iron Oxide 

Nanocrystals.  

 The metal- oleate complex was prepared by reacting metal chlorides and sodium oleate. In this 

process, 10.8 g of iron chloride (FeCl3·6H2O, 40 mmol, Aldrich, 98%) and 36.5 g of sodium 

oleate (120 mmol, TCI, 95%) were dissolved in 80 mL ethanol, 60 mL distilled water and 140 ml 

of hexane. The solution was heated to 70 °C and kept for four hours. When the reaction was 

completed, the upper organic layer which contained the iron-oleate complex was washed three 

times with 30 mL distilled water in a separatory funnel. After washing, hexane was evaporated 

off, resulting in a red waxy solid form of iron-oleate.  

The sodium oleate complex forms the monodisperse iron oxide nanocrystals using thermal 

decomposition. In this process, 12g (40 mmol) of iron oleate complex from [1] and 1.9 g of oleic 

acid were dissolved in 67 g of 1-octadecene at room temperature. The mixed solution was 

increased to 320 °C with a kinetic rate of about 3 °C min–1. At the desired temperature, the 

solution was kept for 30 minutes. A severe reaction occurred where the transparent solution 

became brownish black. The resulting solution containing the nanocrystals was then cooled to 

room temperature, and 167 mL of ethanol was added to precipitate the nanocrystals. The 

nanocrystals were separated by centrifugation as a final step.  



 

47 

        

1.2                               3.2 Synthesis of Core-Shell Structure 

The average 15 nm sized Fe3O4 nanocrystals were synthesized by this reference [2]. The Fe3O4 

nanocrystals were stabilized with oleic acid and dispersed in chloroform at a concentration of 6.7 

mg Fe/mL. From the ratio given, the amount of Fe3O4 could be theoretically calculated using 

stoichiometry.  

On the side, 10 mg of rhodamine B isothiocyanate (RITC) was reacted with 44 uL of 3-

aminopropyltriethoxysilane (APTES) (molar ratio of RITC: APTES=1:10) in 0.75 mL of ethanol 

under dark conditions for 2 days. The stock solution prepared has to be kept in the fridge at -4C. 

[2]  

From the exact concentration ratio, 0.5 mL of Fe3O4 nanocrystals in chloroform was poured into 

5 mL of 0.055 M aqueous cethyltrimethylammonium bromide (CTAB) solution and the resulting 

solution was stirred vigorously for 30 minutes. After a vigorous shaking, the formation of an oil-

in-water micro-emulsion resulted in a turbid brown solution. The mixture was heated up to 60 oC 

and stabilized at this temperature for 10 minutes to evaporate the chloroform, resulting in a 

transparent black Fe3O4/CTAB solution. Next, 45 mL of water and 0.3 mL of 2M NaOH was 

added where the mixture was heated up to 70 oC under stirring. Then, 0.5 mL of 

tetraethylorthosilicate (TEOS), 50 μL of RITC-APTES solution, and 3 mL of ethylacetate was 

added to the reaction solution in sequence. After 10 minutes, 50 μL of APTES was added and the 

solution was stirred for 3 hours. The synthesized Fe3O4@SiO2 NP’s were washed several times 

with ethanol to remove the unreacted species and dispersed in 20 mL of ethanol. Finally, to 

extract CTAB from the NPs, 40 μL of HCl was added to the dispersion and stirred for 3 hours at 

60 oC. The resulting product was re-dispersed in ethanol and a magnetic bar could be used to see 

if the magnetism is still in effect. [2] Fig. 3.1 shows the chemical structure of Iron Oxide Silica 

Structure.  
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Figure 3.1: Iron Oxide Silica Structure 
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3.3 Synthesis of Graphene Oxide  

The process of making graphene oxide derivatives followed that of Hummer based on this 

reference [3]. 1 g of graphite flakes was added to 50mL concentrated sulfuric acid while stirring 

in an ice bath. 3 g of potassium permanganate was slowly added by maintaining the temperature 

under 10 o C to obtain graphite oxide. The suspension was stirred at room temperature for 25 

minutes followed by 5-minute sonication in an ultrasonic bath where this process was done 12 

times. The reaction was quenched by the addition of 200 mL distilled water and an extra 2-hour 

ultrasonic treatment was carried out producing graphene oxide. After the pH was adjusted to 

around 6 by the addition of 1 M NaOH, the suspension was further sonicated for 1 hour. Also the 

same process was worked out where the pH was adjusted to around 8 to ionize the COOH groups 

for the interaction with the phosphate group on DNA-c using a monovalent ion. [3,4] In Fig 3.2, 

it shows the process of synthesizing Graphene derivatives. In Fig 3.3, it shows the structure of 

Graphene oxide with the respective functional groups.  

 

 

Figure 3.2: The Structure of the Hummer’s Approach [5] 
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Figure 3.3: The Functional Groups Associated with Graphene Oxide  

3.4 Target-Probe DNA Loading on Iron-Core Shell Particles  

The target probe DNA (DNA-t) was 5’ CTT TTG TTC 3’ in a stock solution prepared by 

dissolving it in 1.9 mL of Tris-HCl buffer (pH 7.4) .  

The fluorescence measurements were performed by keeping the concentration of Fe3O4@SiO2-

RITC MNPs constant while varying the DNA concentration. There was a cationic bridge where 

the negative charge from the phosphate group binds to the positive charge from the Na+ from the 

sodium chloride in the hydrate form added and the negative charge from the silica group binds to 

the positive charge as well creating a bridge. [6,7,8]  

3.5 Capture-Probe DNA Loading on Graphene Oxide 

The DNA-c strand was 5’ GAA CAA AAG 3’ dissolved in 1.9 mL of Tris-HCl buffer (pH 7.4).  

Different concentration amounts of GO were used ranging from 0.01 M to 0.05 M. In each 

different concentration labelled, 100 µL of 25 mM NaCl solution was added. The reaction was 

mixed and later, 100 µL of 10 µM DNA was added to the solution. The solutions were incubated 

for 10 minutes at room temperature. [9]  

 The carboxylic acid groups get deprotonated when the pH ~8. [10,11] The negative charge on 

the silica and GO create a bridge with the Na+.  
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3.6 Hybridization of DNA-t and DNA-c 

All fluorescence measurements were performed using a fluorometer using a quartz cuvette of 1 

cm path length by keeping the concentration of the core-shell constant while keeping the DNA 

concentration constant at 5 µM at 313K. Samples were excited at 570 nm and the emission 

spectra were recorded in the range from 530-700nm.  

The concentration of DNA-c that was mixed with GO was fixed at 1 mg/ mL. The concentration 

of the DNA-t and the core-shells were incubated at 313 K for 16 hours for the hybridization 

process with DNA-c bound GO. [12]  

In addition, the competitive interaction between the core-shell particles with DNA-t was studied. 

Different amounts of DNA added produced different emission intensities.  

3.7 5’ Modification of Target Probe DNA 

The goal is to modify the 5’ phosphate group on DNA by directly forming a phosphoramidate 

bond.  

First, dissolve ethylene-diamine to a final concentration of 0.25 M in 10 µL of 0.1 M imidazole. 

Then, weigh 1.25 mg (6.52 µmol) of EDC into a microcentrifuge tube. Next, add 7.5 µL of the 

prepared oligonucleotide to the tube containing EDC and immediately add 5 µL of the ethylene-

diamine/imidazole solution. Then, vortex the tube until contents are completely dissolved, and  

briefly centrifuge the tube to gather contents. The next step involves adding 20 µL of 0.1 M 

imidazole, pH 6. Finally, incubate the reaction to 37 °C for 24 hours. In Fig 3.4, it shows the 

chemical structure of the 5’ Mod process.   

3.8 Amino Modification of Silica Particles 

The core-shell particles were functionalized by adding 15 µL of APTS to 15 mg of non 

functionalized core-shell particles suspended in 1 mL of ethanol (95%), using a glass vial and a 

magnetic stirrer. Just before the addition of APTS, the suspension of the core-shell particles was 

sonicated for 15 minutes to remove the possible clumps and, thus, to maximize the surface 

available for functionalization. After sonication and addition of APTS, the mixture was stirred 

overnight. These core-shell particles were also dried at room temperature. [12,13]  
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3.9 Glutaraldehyde- Amino Modified Iron Oxide Silica Particles 

The dried amino modified core-shell particles were transferred to a glass vial and dispersed in 3 

mL distilled water to obtain a final concentration of 2.5 mg mL-1. Following dispersion, the 

amino modified iron oxide- silica particles were mixed and reacted with 50 µL of 25 % 

commercial grade glutaraldehyde (Glu) solution overnight in the dark to form Glu- FMNPs. The 

mixture was purified by centrifugation to remove the supernatant, and further re-suspended in 

10mL of water. [14,15]  

3.10 DNA-t-Glutaraldehyde-Amino Modified Iron Oxide Silica 
Particles 

The 5’ Modified DNA were transferred to a glass vial and dispersed in 3 mL of HEPES Buffer 

(20 mM HEPES, 150mM NaCl, pH 7.4) to obtain a final concentration of 0.1 µM. Following 

dispersion, the 5’ DNA was mixed and reacted with 50 µL of 25% commercial grade 

glutaraldehyde-amino modified iron oxide silica particles overnight and incubated at 40 degrees 

Celsius. [14] The final product was labelled as Fe3O4@SiO2@NH2@Glu@5’Mod DNA-t.   

3.11 5’ Mod DNA-c Loading on Graphene Oxide  

The DNA-c strand was modified using the same technique done for DNA-t. The strand was kept 

in the Tris-HCl buffer at pH ~6.  

Different concentration amounts of GO were used ranging from 0.01 M to 0.05 M. The reaction 

was mixed where 100 µL of 10 µM DNA was added to the solution. The solutions were 

incubated for 10 minutes at room temperature. [9]  

The GO was prepared at around pH~6 and so the carboxylic acid groups were not deprotonated 

and bonded to DNA-c through peptide bonding. [10].  



 

54 

        

 

Figure 3.4: 5’ Mod DNA Structure 
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3.12 Characterization Methods 

3.13 Transmission Electron Microscopy 

This technology supported by the Biotron Facility at The University of Western Ontario is a 

microscopy technique which uses a beam of electrons transmitted through a thin specimen where 

it interacts as it passes through. A two-dimensional image is formed by the interaction from the 

beam and the specimen where it can be displayed onto an imaging device or detected by the 

camera. The TEM micrographs of Fe3O4 nanocrystals of 15 nm in diameter, and surface 

modified Fe3O4@SiO2 were collected by a Phillips CM 10 TEM. The substrates of the samples 

were put onto the carbon coated copper grids (200 meshes) through the drop casting method. The 

TEM samples were prepared by placing a drop of the sample solution onto the copper grid where 

light would evaporate the sample before put into use.  

3.14 Fourier Transform Infrared Spectroscopy 

This technology known as Fourier Transform Infrared Spectroscopy (FTIR) is a technique to 

characterize the functional groups of a material. This technique generates an infrared spectrum 

absorption or emission of the liquid, gas, and solid specimen. It absorbs energy from a 

monochromatic beam where it can target the molecule to output the correct functional groups of 

the certain material. In this study, FT-IR technique was used to characterize the core structure, 

the core-shell structure, surface modified core-shell with DNA-t, graphene oxide, and DNA 

conjugation on graphene oxide. In this study, the FT-IR spectra of samples were characterized 

with a Bruker Vector 22 FT-IR spectrometer. The scan range for the FT-IR was 600-4000 cm-1 

and the resolution was set at 1 cm-1. Before the experiment was run, the background was tested 

as air was the medium to characterize the sample.  

3.15 Ultraviolet-visible Spectroscopy 

Ultraviolet-visible spectrophotometry (UV-Vis) refers to the absorption and reflectance 

spectroscopy in the ultraviolet and visible spectral region. The range of light differs in the 

visible, near-UV and near-infrared regions. This technique differentiates the surface plasmon 
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resonance (SPR) of nanomaterials. The absorbance or reflectance in the visible region directly 

affects the perceived color of the chemicals. In this study, Agilent Cary 60 UV-Vis 

Spectrophotometer was used to characterize the absorption spectrum of the graphene oxide and 

DNA-c bridged to Graphene Oxide.  

3.16 Vibrating Sample Magnetometer 

The vibrating sample magnetometer (VSM) is one of the most successful implementations of a 

magnetometer. The sample is introduced in a constant uniform external magnetic field which 

shows the magnetization in the sample. As the magnetized sample is vibrated, it introduces 

perturbations in the external magnetic field. A set of coils can be arranged around the sample to 

measure the perturbations. The test process is that specimen is placed in a uniform magnetic field 

to magnetize the sample. The sample is put in a quartz holder which is connected to a vibration 

motor. The information would be collected by the detector and the hysteresis curves can be 

analyzed. The system has various applications on superconducting materials, magnetic films, 

anisotropic materials, monocrystal magnetic materials, etc. The magnetic properties were 

measured by LakeShore 7407 vibrating sample magnetometer.  

3.17 Fluorescence Spectroscopy 

This technology shows the fluorescence properties of the nanomaterials can be studied upon. A 

beam of light is applied to the instrument to excite the electrons and the emission is studied upon 

by the other end of the equipment. This data is collected by the detector. In this study, the 

fluorescence is measured at different emissions on the DNA-t on the modified core shell 

structures. Also, when DNA-c was conjugated on graphene oxide, it would be hybridized with 

DNA-t and the fluorescence studies would be measured.  
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Chapter 4 : Development of Multifunctional Nanoparticles for DNA 
Sensing Using the Charging Effect 

Fe3O4 nanocrystals were synthesized using the thermal decomposition method to which later 

silica was hydrolyzed around the core structure. The surface morphologies of the core and the 

core-shell structure were studied using the TEM. Since the material contains magnetic properties, 

the VSM was instigated to look at the properties of the material. The FTIR Analysis was used to 

confirm the chemical structure of the compounds from the characterization of the peaks.  

The production of graphene oxide (GO) using Hummer’s approach was obtained and the 

conjugation with DNA-c was established. UV spectroscopy was used to confirm the DNA-c 

conjugated onto graphene oxide (GO) by the use of a monovalent ion. FTIR tests were also 

instigated to see the difference when DNA-c was conjugated onto GO.  

Once the two systems above were established, the hybridization between the DNA-t and the 

DNA-c took place. Fluorescence studies showed the system at different target probe DNA 

concentrations to study the selectivity and sensitivity of the interaction with the core-shell 

particle 

1.1                               4.1 Introduction 

Magnetic nanostructures are a novel idea for scientists and engineers to work on for different 

applications. Different methods were developed for various magnetic nanostructures. The 

nanostructures vary from nanoparticles, nanocrystals, nanoplates, nano-rods, etc. Different 

synthetic methods were developed to precisely control the size of the magnetic nanostructures 

and fabricate monodisperse magnetic structures. The magnetic nanostructures have been applied 

in different fields. These applications include: MRI Imaging [1], drug delivery [2], and in 

Biosensing [3]. The advantages associated with these core structures are: Chemical stable under 

physiological conditions [4], functionalization with other materials such as silica [5], and a high 

magnetic moment [6]. The disadvantages of these core structures: Aggregation of the Particles 

[7], and the Stability of the Structures. [7] The conventional methods to produce the iron oxide 

nanostructures are from the sol-gel technique, co-polymerization, thermal decomposition, etc. 

[8,9] The challenges are that different processes will control the shape and size, achieve mono-
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dispersity better than others, reproduce and scalability of process and provide a better attachment 

for complex nanostructures.  

In biotechnology fields, the core particle, which is composed of magnetite, would be further 

functionalized with inorganic materials to improve on the stability as well as the aggregation. 

The modification between the core and the shell structure for the immobilization is studied. 

Having the core-shell structure from the surface modification strategies improves the aggregation 

as well as the stability of the nanostructure. The observations and the particle distribution can 

confirm the diameter for the optimal size of the core and the core shell for further process in the 

certain application. With the core and core-shell structure, the magnetic properties are studied. 

Also, the type of magnetism is viewed from the extrapolation of the data to fully convey from the 

hysteresis curve.  

In relation to the core-shell structure observed, further functionalization of DNA is incorporated 

through the charging effect. DNA is composed of three main components: Phosphate backbone, 

sugar and base. The 5’ end of DNA is composed of the phosphate backbone and the 3’ end is the 

hydroxyl group. [10-13] With different functional groups, the particular group is studied for the 

interaction with the core-shell particles. The researchers have developed various synthesis 

methods to overcome the challenges of controlling the composition and size of the core-shell 

structure, as well as the aggregation.  

Synthesizing graphene oxide (GO) from Hummer’s approach can help us to functionalize it 

further with other materials. [14-16] Graphene Oxide has functional groups such as the hydroxyl, 

epoxide, and carboxylic acid groups. [17] These groups can lose the negative charge at certain 

buffer conditions where it can interact with other materials such as DNA, in this case.  

4.2 Results   

The core (Fe3O4) and the core-shell (Fe3O4@SiO2) were used by the TEM. The TEM looks at the 

bulk of the material where the core of the material could be sought out. Using the SEM would be 

not as efficient as it scans the surface of the sample and the core would not be fully 

distinguished. 
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4.3 Characterization of Fe3O4 Nanoparticles 

The iron oxide nanocrystals were prepared and characterized by TEM. Fig. 4.1 shows a TEM 

micrograph of the iron oxide nanocrystals where the scale bar was set at 100 nm. The result 

indicates the iron oxide nanocrystals are monodispersed spherical structures. The particle size 

and size distribution were calculated. Table 4.1 shows that the average particle size is 14.36 nm 

with a narrow size distribution. Fig. 4.2 and 4.3 shows the TEM micrographs of the iron oxide-

silica nanostructures where the scale bar was set at 100 nm and 500 nm, respectively. The 

particle size and size distribution were calculated. Table 4.2 shows that the average particle size 

is 37.85 nm.  
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Figure 4.1: TEM Micrograph Image of the Iron Oxide Nanocrystals 
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Table 4.1: Statistical Analysis of the Iron Oxide Nanocrystals 

Measure of Central Tendency Number 

Mean 14.4 

Mode 14.2 

Median 14.8 

Max 16.1 

Min 13.3 

Standard Deviation 1.1 
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Figure 4.2: TEM Image of the Core-Shell Structures 

The picture above illustrates the TEM image of where the silica is layered over the core particles. 

The scale bar was set to 100 nm and from that measurement; the diameter from the software 

could be measured.  
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Figure 4.3: TEM Image of the Core-Shell Structures  
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Table 4.2: Statistical Analysis of Core-Shell Structures 

Measure of Central Tendency Number 

Mean 37.9 

Mode 35.0 

Median 35.0 

Max 60.0 

Min 25.0 

Standard Deviation 11.9 

4.5 Fourier Transform (FTIR) Analysis 

The Fe3O4 nanocrystals, silica-coated Fe3O4 nanocrystals and silica-coated Fe3O4 nanocrystals 

with DNA conjugation were identified using a FT-IR spectrometer. In the FT-IR spectra 

presented in Fig. 4.4, the peaks at around 700 cm-1 and 800 cm-1 is indicative of the vibration of 

Fe-O bond.  

The FT-IR spectrum of Fe3O4@SiO2 MFNP in Fig. 4.5 shows absorption bands arising from 

symmetric vibration of Si-O-Si (800 cm-1), asymmetric vibration of Si-OH (1000 cm-1), and 

asymmetric stretch of Si-O-Si (1100 cm-1). The results prove that the formation of a silica 

coating on the surface of the Fe3O4 MFNC.  

The FT-IR spectrum of DNA conjugated on Fe3O4@SiO2 MFNP Fig. 4.6 shows the absorption 

bands arising from around 700 cm-1 are the vibration of the Fe-O bond. The shift in the spectrum 

of the asymmetric vibration of Si-OH (~1000 cm-1) and asymmetric stretch of Si-O-Si (~1100 

cm-1) are shown. The peaks between 1000 cm-1 and 2000 cm-1 represent the stretches from the 

bases which is indicative of the DNA and nanoparticles. The stretch around 3700 cm-1 represent 

the –OH peak from the 3’ end of DNA. This represents that DNA has been conjugated onto the 

MFNP. 
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Figure 4.4: FTIR Spectrum of Fe3O4 Nanocrystals 
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Figure 4.5: FTIR Spectrum of Fe3O4@SiO2 Multifunctional Nanostructures 
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Figure 4.6: FTIR Spectrum of Fe3O4@SiO2@DNA-t 

4.6 Vibrating Sample Magnetometer Analysis   

The magnetic properties of the Fe3O4 nanocrystals were measured by the vibrating sample 
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coercivity (Hc) of around 50 G. The coercivity indicates how much magnetization is needed to 

bring back the field to 0 G.  

The magnetic properties of the synthesized Fe3O4@SiO2 were measured by the vibrating sample 

magnetometer (VSM) shown in Fig. 4.8. The y-axis was represented as the moment (emu/g) and 

the x-axis as Field (G). With the data extrapolation to represent the field from -1000 G to 1000 

G, the hysteresis curve was represented. The saturation magnetization (Ms) of the silica bound 

Fe3O4 nanocrystals was 15 emu/g when the field was around 750 G. The remanence 

magnetization (Mr) value indicates it is around 2.5 emu/g and the coercivity is around 50 G. With 

the silica shell surrounding the core, it shows the magnetization dropped due to various reasons. 

One reason could be due to the oxidation of Fe3O4 and the encapsulation of the shell makes the 

core lose some of its magnetization.  

 

Figure 4.7: VSM of Iron Oxide Nanocrystals  
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Figure 4.8: VSM of Core Shell Structures 
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Figure 4.9: UV Absorption of DNA-c on GO and GO 

4.8 Fluorescent Studies and Analysis   
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Figure 4.10: The Fluorescent Intensity of DNA-t on Iron Oxide Silica (Core-Shell) 
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Figure 4.11: Fluorescent Intensity vs. DNA-t Concentration 
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Figure 4.12: Fluorescent Intensity vs. LOG (DNA-t) 
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concentration of target DNA. The detection limit, based on 3 /slope (where  was the standard 

deviation of the background signal) was 0.25 µM.  

 

Figure 4.13: The Fluorescent Intensity on The Effect of GO 
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Figure 4.14: Fluorescent Intensity vs. GO Concentration 
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Figure 4.15: Fluorescent Intensity vs. LOG GO [M} 
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the GO was detected and analyzed. The fluorescence spectra of the system upon the addition of 

GO was shown in Fig. 4.13. In the absence of the GO, the solution emitted strong fluorescence. 

From Fig. 4.13, it showed that the fluorescence intensity (FL) at 580 nm was highly sensitive to 

the target DNA and decreased with increasing concentration of GO. The dependence of 

fluorescence intensity on GO concentration is plotted in Fig. 4.14. The fluorescence intensity 

was proportional to the logarithmic concentration of GO is shown in Fig. 4.15. The regression 

equation is expressed as y=-252587x-181527 with a correlation coefficient R2 of 0.97658, where 

y is the fluorescence intensity and x is the concentration of GO. The detection limit, based on 3 

/slope (where  was the standard deviation of the background signal) was 0.0059 M.  

4.9 Summary   

In summary, the multifunctional nanoparticle was synthesized to study the sensitivity of the 

target DNA through the charging effect from 0-30 µM of DNA-t. It was found that the limit of 

detection was as low as 0.25 µM based on the range of 0-30 µM of DNA-t. Once the target DNA 

was hybridized with the complementary DNA, the effect of graphene oxide was studied to see if 

it had any effect on the fluorescent multifunctional nanoparticle. The range of graphene oxide 

was studied from 0-0.12 M and the limit of detection was as low as 5.9 µM from the quenching 

effect.  
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Chapter 5 : Development of Multifunctional Nanoparticles for DNA 
Sensing Using Covalent Bonding 

The design approach constructs using the covalent bonding technique between DNA-t and the 

silica particles with the use of glutaraldehyde.  

The production of graphene oxide (GO) using Hummer’s approach was obtained and the 

conjugation with DNA-c was established. UV spectroscopy was used to confirm the DNA-c 

conjugated onto graphene oxide (GO). FTIR tests were also instigated to see the difference when 

DNA-c was conjugated onto GO through the use of covalent bonding as well with the use of 

glutaraldehyde.  

Once the two systems above were established, the hybridization between the DNA-t and the 

DNA-c took place. Fluorescence studies also took place to see the quenching technique between 

the system at different target probe DNA concentrations to study the selectivity and sensitivity of 

the interaction through the use of covalent bonding. 

1.1                               5.1 Introduction 

The magnetic nanostructures can have different bonding techniques for the same application to 

see how it varies from other validation strategies. Different designs will show which is more 

effective. Researchers are constantly finding ways for a best suitable approach for the optimal 

interaction between the DNA and the nanomaterial. Different functionalization strategies are in 

place for the interactions to take place. Some strategies propose a better bonding interaction 

whereas others are not as compatible. [1,2]  

The strategy in producing the core and the core-shell structure is the same way as Chapter 4. In 

this chapter, modification and functionalization strategies are proposed in order for the covalent 

bonding strategies to take place. 5’ Mod on the DNA structure which adds an amino group will 

be taking place and functionalization strategies on the silica particles with another amino group 

on the outer surface will be in place where the interaction with glutaraldehyde can be used for 

the covalent bonding technique.  
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However, while they have obtained some achievements in the area of magnetic-DNA bonding 

with the hybridization of other DNA molecules, there are still potential drawbacks in practical 

applications: (1) the interaction has the potential to leach out from the interaction from the DNA 

to silica particles or to the graphene oxide during its application, and (2) it is a challenge to 

precisely control the loading amount of glutaraldehyde and DNA amount to the silica particles as 

well as the loading of DNA-c on graphene oxide and then tailor to the properties for its desired 

application.  
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5.2 The Design Approach with the Binding Strategy  

 

Figure 5.1: 5’ Modification of DNA 
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Figure 5.2: Imine Reaction of Amine to Glutaraldehyde 
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Figure 5.3: Imine Reaction of the 5’ Mod DNA to Glutaraldehyde 
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In Fig. 5.1, it shows the 5’ Mod of DNA on the phosphate backbone. In Fig. 5.2, it shows the 

amino group onto the silica group attaching to the glutaraldehyde through the imine reaction. In 

Fig. 5.3, it shows the 5’ Mod DNA attaching to the other side of the glutaraldehyde.  

5.3 Fourier Transform Infrared Spectroscopy Analysis  

The silica-coated Fe3O4 nanocrystals, Fe3O4@SiO2@NH2, glutaraldehyde, Fe3O4@ 

SiO2@NH2@Glu, DNA-t on glutaraldehyde, DNA t-glutaraldehyde-silica particles will be 

shown to characterize its peaks by Fourier Transform Infrared Spectroscopy.  

The FT-IR spectrum of Fe3O4@SiO2 MFNP in Fig. 5.4 shows absorption bands arising from 

symmetric vibration of Si-O-Si (800 cm-1), asymmetric vibration of Si-OH (1000 cm-1), and 

asymmetric stretch of Si-O-Si (1100 cm-1). The results prove the formation of silica coating on 

the surface of the Fe3O4 MFNC. The dip around 3250 cm-1 is due to iron oxide- silica in the 

water.  

The FT-IR spectrum of Fe3O4@SiO2@NH2 in Fig. 5.5 shows the two peaks at around 3250 cm-1 

which indicates the amino peaks have been coated onto the surface of the iron oxide-silica 

particles.  

The FT-IR spectrum of glutaraldehyde in Fig. 5.6 shows the C=O bond stretch at around 1600 

cm-1. The dip at around 3400 cm-1 shows that glutaraldehyde is suspended in water.  

The FT-IR spectrum of Fe3O4@SiO2@NH2- Glutaraldehyde in Fig. 5.7 shows absorption bands 

arising from the asymmetric stretch of Si-O-Si (1000 cm-1), C=N stretch (1600 cm-1), and C=O 

stretch (1800 cm-1). The peak around 3400 cm-1 arises due to the compound suspended in water 

which corresponds to the –OH group.  

The FT-IR spectrum of Fe3O4@SiO2@NH2@Glutaraldehyde@DNA 5’ Mod in Fig. 5.8 shows 

the absorption bands where the Fe-O stretch is visible around 700 cm-1, asymmetric stretch of Si-

O-Si (1000 cm-1), the small signal peaks associated past 1000cm-1 to 1400 cm-1 is associated with 

the bases from the DNA, C=N stretch is associated with the 1600 cm-1 which has been shifted, 

the 3’ end of DNA is around 3400 cm-1 collaborates to –OH peak.    
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The FT-IR spectrum of graphene oxide in Figure 5.9 shows the absorption bands where the C=O 

is around 2000 cm-1 and the –OH peak is around 3500 cm-1.  

The FT-IR spectrum of DNA-c in Figure 5.10 shows the absorption bands where the phosphate 

backbone is showing a band around 870 cm-1, bands showing from 1260 to 1360 cm-1 are from 

the bases of the DNA and the –OH group corresponding to 3400 cm-1.  

The FT-IR spectrum of 5’ Mod DNA-c on GO in Figure 5.11 shows the absorption bands where 

the phosphate backbone is visible around 800 cm-1, DNA bases (930-1218 cm-1), C=O is 

associated around 1361 cm-1, C=N is associated around 1562 cm-1, OH peak around 3038 cm-1, 

and the secondary imine peak around 3267 cm-1.  
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Figure 5.4: FTIR Spectrum of Fe3O4@SiO2 
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Figure 5.5: FTIR Spectrum of Fe3O4@SiO2@NH2 
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Figure 5.6: FTIR Spectrum of Glutaraldehyde 
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Figure 5.7: FTIR Spectrum of Fe3O4@SiO2@NH2@Glu 
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Figure 5.8: FTIR Spectrum of Fe3O4@SiO2@NH2@Glu@DNA-t 
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Figure 5.9: FTIR Spectrum of GO 
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Figure 5.10: FTIR Spectrum of DNA-c 
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Figure 5.11: FTIR Spectrum of DNA-c on GO 
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5.4 Fluorescent Studies   

The studies here show the different 5’ Mod DNA-t concentrations ranging from 0 µM to 4 µM, 

keeping the glutaraldehyde volume constant, and the Fe3O4@SiO2@NH2 at 1 mg/mL.  

 

Figure 5.12: Fluorescent Intensity of Different 5’ Mod DNA-t Concentrations 
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Figure 5.13: Fluorescent Intensity with Different 5’ Mod DNA Concentrations 
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concentration of target DNA. The detection limit, based on 3 /slope (where  was the standard 

deviation of the background signal) was 0.41 µM. 

5.5 Fluorescent Intensity Levels with Different Concentrations of 
GO  

 

Figure 5.14: The Effect of GO on the Fluorescent Intensity of Fe3O4@SiO2@NH2 with 
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Figure 5.15: Fluorescent Intensity vs. GO Concentration 

The 5’ Mod DNA-t was conjugated onto Fe3O4@SiO2@NH2 through the use of the cross-linker 

Glutaraldehyde and was hybridized with DNA-c in solution onto graphene oxide through peptide 

bonding to emit luminescence in the Tris-HCl buffer, with the maximum luminescence observed 

at around 580 nm. The fluorescence intensity of the MFNPs was observed to decrease with 

increasing the concentration of GO at low concentrations.  

Changing the concentration of Graphene Oxide showed the sensitivity. Keeping the 

concentration of the DNA-c constant, DNA-t constant, the concentration of the MFNP constant 

gave the correspondence of the fluorescence at different concentrations where the GO was 

detected and analyzed. The fluorescence spectra of the system upon the addition of GO was 

shown in Fig. 5.14. In the absence of the GO, the solution emitted strong fluorescence. From Fig. 

5.15, it showed that the fluorescence intensity (FL) at 580 nm was highly sensitive with 

y = -1E+06x + 41377
R² = 0.9846
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increasing concentration of GO. The dependence of fluorescence intensity on GO concentration 

is plotted in Fig. 5.15. The regression equation is expressed as y= -1E+06x + 41377 with a 

correlation coefficient R2 of 0.98463, where y is the fluorescence intensity and x is the 

concentration of GO. The detection limit, based on 3 /slope (where  was the standard 

deviation of the background signal) was 0.0003 M.  

5.5 Summary  

In summary, the multifunctional nanoparticle was synthesized to study the sensitivity of the 

target DNA through the covalent interaction from 0-4 µM of DNA-t. It was found that the limit 

of detection was as low as 0.41 µM based on the range of 0-4 µM of DNA-t. Once the target 

DNA was hybridized with the complementary DNA, the effect of graphene oxide was studied to 

see if it had any effect on the fluorescent multifunctional nanoparticle. The range of graphene 

oxide was studied from 0-0.007 M and the limit of detection was as low as 3 µM from the 

quenching effect.  
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Chapter 6: Summary and Future plan 

6.1 Summary 

Iron Oxide and Graphene Oxide are two of the most common biomaterials used in the field of 

biomedical applications. Due to many limitations from their physical and chemical properties, 

this research goal was to improve on the surface modification where the selectivity and 

sensitivity towards DNA could be sought out from two different design systems. In this research, 

our goal was to engineer two different systems: (1) Cationic Bridge System and (2) Covalent 

Interaction System using these surface modified nanomaterials to establish the selectivity and 

sensitivity towards DNA sensing. From the two different systems, the fluorescent biosensor can 

see the sensitivity towards the target DNA. By establishing the groundwork with the DNA 

sensing capabilities, the effect of GO is also investigated from the two different systems.  

In the Cationic bridge system, the iron oxide was surrounded by an inorganic core of silica where 

the negative charge bridges to Na+ and the other negative charge from the DNA is attached to the 

monovalent ion. From the conjugation, the effect of DNA sensing was studied and the limit of 

detection was calculated to be as low as 0.25 µM from the range of 0 to 30 µM of the target 

DNA using this design mechanism from the fluorescent biosensor. The target DNA is in the 

process of hybridizing with the complementary DNA where the DNA-c is bridged with graphene 

oxide. The effect of GO was investigated keeping DNA-t, DNA-c, and the multifunctional 

particles constant. The hybridization is underway for more confirmable tests to see if the DNA 

bonding has a big impact on the fluorescence tests from the effect of Graphene Oxide.  

In the Covalent Interaction system, the iron oxide was surface modified with the inorganic core 

of silica. Later, amino groups were attached to the silica surface which could bond to 

glutaraldehyde as a cross-linker with the amino groups of DNA-t from the 5’ Modification. From 

the conjugation, the effect of DNA sensing was studied and the limit of detection was calculated 

to be as low as 0.41 µM from the range of 0 to 4 µM of the target DNA using the design 

mechanism from the fluorescent biosensor. Later, the target DNA was in the process of potential 

hybridization with the complementary DNA which peptide bonded with Graphene Oxide. The 

effect of GO was studied, but the hybridization is still in the verification process.  
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A biosensor is composed of a biological agent that attaches to an analyte which uses a form of a 

transducer that has a signal processor that outputs the data in some form. Here, the fluorescent 

biosensor was initiated where the multifunctional particles were interacted with the DNA agent 

and light interacts with the sample to output the data. A novel fluorescent biosensor was used to 

study the biomedical application and hopefully could be used as a promising tool for Cancer 

Diagnosis in the future.  

6.2 Future Plan 

Different transducers are in place ranging from electrochemical, electromechanical, and 

fluorescent based biosensors. Some of these biosensors are a great application in the biomedical 

field in the prospects of disease diagnosis, particularly in the Cancer area. The demand and need 

for using a biosensor for rapid analysis with cost effectiveness is still being worked upon by 

scientists and engineers. In that situation, both 2D and 3D detection are required with 

sophisticated transducers for targeting and quantifying small analytes. The level of development 

in the area of biosensors should take a notch in discovering more robust regenerative biosensors 

for long term use. If the technology can improve to this level, new diagnostic biosensors can be 

developed for many biomedical applications and help clinicians and patients understand the 

integrative understanding of diseases and therapy. In relation to this, the fluorescent biosensor is 

excellent for assessing the efficacy of the tumor cell concentration and see how early Cancer 

could be detected. Currently, the use of aptamers, peptides, antibodies, and other materials are 

examples for the prospective approach in delving into this research. In this thesis,  the engineered 

design of the nanomaterials to see the sensitivity of the target DNA by two different approaches 

were studied. This approach could be the materials used to view the Cancer Diagnosis as an in-

vitro analysis in the future. Different biological agents can be used in the detection, ranging from 

other various nanomaterials, polymers that can provide hybrid devices for better usage in the 

earlier detection. Looking out in the horizon, potential application and characteristics like analyte 

detection ability, analysis time, portability, cost and customization have to be taken into account 

and be improved upon in this field.  

In this thesis, we constructed the fluorescence system using nanomaterials as biological agents. 

Different mechanisms can also be put into place to enhance the selectivity and sensitivity 
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towards DNA sensing. Different cations could be used from different monovalent to divalent 

ions to see the difference in the sensitivity in DNA sensing. The difference could be studied 

further upon with various cation bridges to compare the difference. In the other system, the idea 

of using the streptavidin and biotin could be used to enhance the different covalent interaction 

systems and look at the selectivity it adheres to the DNA sensing.  

With the starting materials used for both the cationic and covalent interaction, the amount of 

target DNA after introducing graphene oxide can be worked upon. The quantification process of 

the amount of target DNA bound to the multifunctional nanoparticles in both processes can be 

looked to further investigate in these two designs. The next steps would be to magnetically 

separate the multifunctional nanoparticle from the target DNA to check the quantification 

process.  

In conclusion, looking at different biological agents, different mechanisms, and transducers, it 

can improve the analyte detection, analysis time, portability, cost, etc.  
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Appendices  

Figure 2.1: Electrochemical Design for DNA-t Detection [7]. Copyright Permission is obtained.  

Figure 2.2: Oxidation and Reduction of Iron Oxide Compounds [62]. Copyright Permission is 

obtained. 

Figure 3.2: The Structure of the Hummer’s Approach. Copyright Permission is obtained.  
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